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ABSTRACT 

Implementing a higher quality input phrase to driven reverse wordbook. In contrast to a conventional 
forward wordbook, that map from word to their definitions, a reverse wordbook takes a user input phrase 
describing the specified construct, and returns a group of candidate words that satisfy the input phrase. This work 
has important application not just for the final public, notably those that work closely with words, however 
conjointly within the general field of abstract search. The current a group of algorithms and therefore the results 
of a group of experiments showing the retrieval accuracy and therefore the runtime latency performance is 
implementation. The experimental results show that, approach will offer important enhancements in performance 
scale while not sacrificing the standard of the result. Experiments scrutiny the standard of approach to it of 
presently on the market reverse dictionaries show that the approach will offer considerably higher quality over 
either of the opposite presently on the market implementations. 
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1. INTRODUCTION 

A Report work on creating a reverse 
dictionary, As against a regular (forward) wordbook 
that maps words to their definitions, a WD performs 
the converse mapping, i.e., given a phrase describing 
the required conception, it provides words whose 
definitions match the entered definition phrase. 
It’s relevant to language understanding. The approach 
has a number of the characteristics expected from a 
strong language understanding system. Firstly, 
learning solely depends on unannoted text 
information, which is abundant and contain the 
individual bias of an observer. Secondly, the approach 
is predicated on all-purpose resources (Brill’s PoS 
Tagger, WordNet [7]), and also the performance is 
studied below negative (hence additional realistic) 
assumptions, e.g., that the tagger is trained on a 
regular dataset with doubtless totally different 
properties from the documents to be clustered. 
Similarly, the approach studies the potential 
advantages of victimization all potential senses (and 
hypernyms) from WordNet, in an endeavor to defer 
(or avoid altogether) the necessity for Word Sense 
Disambiguation (WSD), and also the connected 
pitfalls of a WSD tool which can be biased towards a 
particular domain or language vogue 

The user input is unlikely to precisely match 
(indeed, would possibly disagree wide from) the 
definition of a word within the forward lexicon. for 
instance, a user could enter the phrase “to waste 
resources on unimportant things” once searching for 
an inspiration like “fritter,” whose definition may be 
“spend frivolously and unwisely”— that is 
conceptually similar, however doesn't contain any of 
an equivalent words because the user input.  

A implemented only the forward mechanism 
to search for the Keyword in the dictionary. The 
forward dictionary that maps words given by the user 
to their definitions. The two most common methods to 
achieve latent semantic indexing (LSI) and principal 
component analysis (PCA), both analyze the 
keywords of documents in a corpus to identify the 
dominant concepts in the document. In most 
implementations of CSP (concept similarity problem) 
solutions, vectorization is done a priori, and at 
runtime, only vector distances are computed. 
Concepts are represented as vectors in a feature (or 
keyword) space.  

  
1.1 Background: 
Natural Language Processing: Natural Language 
Processing (NLP) [6] is a large field which 
encompasses a lot of categories that are related to this 
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thesis. Specifically NLP is the process of 
computationally extracting meaningful information of 
natural languages. In other words: the ability for a 
computer to interpret the expressive power of natural 
language. Subcategories of NLP which are relevant 
for this thesis are presented below.  
WordNet: WordNet [7], [2]  is a large lexical database 
containing the words of the English language. It 
resembles the traits of a thesaurus in that it structures 
words that have similar meaning together. WordNet is 
something more, since it also specifies different 
connections for each of the senses of a given word. 
These connections place words that are semantically 
related close to one another in a network. WordNet 
also displays some excellence of a dictionary, since it 
describes the definition of words and their 
corresponding part-of-speech.  
 

Synonym relation is the main connection 
between words, which means that words which are 
conceptually equivalent, and thus interchangeable in 
most contexts, are grouped together. These groupings 
are called synsets and consist of a definition and 
relations to other synsets. A word can be part of more 
than one synset, since it can bear more than one 
meaning. WordNet has a total of 117 000 synsets, 
which are linked together. Not all synsets have a 
distinct path to another synset. This is the case, since 
the data structure in WordNet is split into four 
different groups; nouns, verbs, adjectives and adverbs 
(since they follow different rules of grammar). Thus it 
is not feasible to compare words in different groups, 
unless all groups are linked together with a common 
entity. There are some exceptions which links synsets 
cross part-of-speech in WordNet, but these are rare. It 
is not always possible to find a relative between two 
words within a group, since each group are made of 
different base types. The relations that connect the 
synsets within the different groups vary based on the 
type of the synsets. The most used relation connecting 
synsets is the hypernym/hyponym relation, which 
specifies “IS-A” relations. The easiest way to capture 
the nature of these relations is to think of them as 
taxonomies. It then becomes evident that hyponym 
relations are transitive i.e. all dogs are canines and all 
golden retrievers are canines. In terms hypernyms are 
more standard than their hyponyms, which are more 
specific.  
 

The coordinate term is easy to understand 
from the above example, since both wolf and dog 
shares the hypernym canine. The holonym/meronym 
relation connecting noun synsets specifies the part-
whole relation. These relations are also called “HAS-
A” relations and inherits from their superordinate. 
Properties are inherited downward and show that the 
meronym is part of the holonym. The reverse is not 
necessarily true i.e. a building is not part of a window. 
The troponym relative is the manner in which 
something is being done. These relate to one another 

in the way they are performed i.e. to yell is to 
communicate in some manner. Specificity is inherited 
downward, thus the more general terms are super 
ordinate. Entailment describes dependencies. By 
doing something you must also be doing something 
else i.e. by driving you must also be moving. 
Adjectives are stored together in antonyms, i.e. 
opposites. These are then linked to semantically alike 
words. In some sense these semantically related words 
are antonyms of their counterparts, which they are 
stored together with. Most adverbs are easily derived 
from adjectives. WordNet relates these adverbs to 
adjectives.  
WordNet Categories WordNet, the lexical database 
developed by Miller et al., is used to include 
background information on each word. Depending on 
the research setup, words are replaced with their 
synset IDs, which constitute their different possible 
senses, and also different levels of hypernyms, more 
general terms for the a word, are added. 
Application Programming Interface  

Several Application Programming Interfaces 
(API) exists for WordNet. These allow easy access to 
the platform and often additional functionality. As an 
example of this the Java WordNet Library [8] (JWNL) 
can be mentioned. This allows for access to the 
WordNet Library files.  
 
PoS Tagging PoS tags[8] are assigned to the corpus 
using Brill’s PoS tagger. As PoS tagging require the 
words to be in their original order this is done before 
any other modifications on the corpora. 

Part-of-speech (POS) tagging is the field 
which is concerned with analysing a text and 
assigning different grammatical roles to each entity. 
These roles are based on the definition of the 
particular word and the context in which it is written. 
Words that are in close proximity of each other often 
affect and assign meaning to each other. The POS 
taggers job is to assign grammatical roles such as 
nouns, verbs, adjectives, adverbs, etc. based upon 
these relations. The tagging of POS is important in 
information retrieval in general text processing. This 
is the case since natural languages contain a lot of 
ambiguity, which can make distinguishing 
words/terms difficult. There are two main schools 
when tagging POS. These are rule-based and 
stochastic. Examples of the two are Brill’s tagger and 
Stanford POS tagger, respectively. Rule-based taggers 
work by applying the most used POS for a given word. 
Predefined/lexical rules are then applied to the 
structure for error analysis. Errors are corrected until 
a satisfying threshold is reached. Stochastic taggers 
use a trained corpus to determine the POS of a given 
word. These trained corpuses contain pre-tagged text, 
which define the correct POS of a given word in a 
given context. The corpuses are vast enough to cover 
a large area, which defines different uses of terms. The 
stochastic tagger retrieves the context of the word in 
question and relates it to the trained data. A correlation 
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is found by geometric analysis upon the use of the 
word in the trained data. This means that the content 
of the trained corpus very much influences the 
outcome. Trained corpuses should thus be picked, 
such that reflection of the field they are trying to tag is 
maximal. Current taggers have a success rate above 
the ninety-seven percent mark. This is to the extent 
where even some linguists argue, which is the correct 
result. It can thus be concluded that these taggers 
exhibit near human results.  
Stopword Removal Stopwords, i.e. words thought not 
to convey any meaning, are removed from the text. 
The approach taken in this work does not compile a 
static list of stopwords, as usually done. Instead PoS 
information is browbeaten and all tokens that are not 
nouns, verbs or adjectives are removed. 

Stop words are words which occur often in 
text and speech. They do not tell much about the 
content they are wrapped in, but helps humans 
understand and interpret the residue of the content. 
These terms are so generic that they do not mean 
anything by themselves. In the context of text 
processing they are basically just empty words, which 
only takes up space, increases computational time and 
affects the similarity measure in a way which is not 
relevant. This can result in false positives.  

Stop words is a broad term and there is no 
precise requirement of which words are stop words. 
To specify if a given word is a stop word, it has to be 
put in context. In some situations a word might carry 
relevance for the content and in others it may not. This 
is defined by the area in which the content resides. A 
stop word list should thus be chosen such that it 
reflects the field which is being analysed. The words 
in such a list should be filtered away from the content 
in question.  
This class includes only one method; which runs 
through a list of words and removes all occurrences of 
words specified in a file. A text file, which specifies 
the stop words, is loaded into the program. This file is 
called “stop-words.txt” and is located at the home 
directory of the program. The text file can be edited 
such that it only contains the desired stop words. A 
representation of the stop words used in the text file 
can be found in table - 1. After the list of stop words 
has been loaded, it is compared to the words in the 
given list. If a match is found the given word in the list 
is removed. A list, exposed from stop words, is then 
returned. 

a 
be 
but 
person 
some 
someone 
too 
very 

who 
the 
in 
of 
and 
to 
that 
for 

with 
this 
from 
whic
h 
whe
n 
what 
than 
into 
 

these 
where 
those 
how 
during 
much 
upon 
toward 
 

among 
although 
whether 
else 
anyone 
beside 
whose 
whom 
 

onto 
anybody 
whenever 
whereas 

Table: 1 List of Stop words 
 

Stemming Words with the same meaning appear in 
various morphological forms. To capture their 
similarity they are normalised into a common root-
form, the stem. The morphology function provided 
with WordNet is used for stemming, because it only 
yields stems that are contained in the WordNet 
dictionary. 
This class contains five methods; one for converting a 
list of words into a string, two for stemming a list of 
words and two for handling the access to WordNet 
through the JWNL API[8]. The first method 
listToString() takes an ArrayList of strings and 
concatenate these into a string representation. The 
second method stringStemmer() takes an ArrayList of 
strings and iterates through each word, stemming 
these by calling the private method wordStemmer(). 
This method checks if the JWNL API has been loaded 
and starts stemming by looking up the lemma of a 
word in WordNet. Before this is done, each word 
starting with an uppercase letter is checked to see if it 
can be used as a noun. If the word can be used as a 
noun, it does not qualify for stemming and is returned 
in its original form. The lemma lookup is done by 
using a morphological processor, which is provided 
by WordNet. This morphs the word into its lemma, 
after which the word is checked for a match in the 
database of WordNet. This is done by running through 
all the specified POS databases defined in WordNet. 
If a match is found, the lemma of the word is returned, 
otherwise the original word is simply returned. Lastly, 
the methods allowing access to WordNet initializes 
the JWNL API and shuts it down, respectively. The 
initializer() method gets an instance of the dictionary 
files and loads the morphological processor. If this 
method is not called, the program is not able to access 
the WordNet files. The method close() closes the 
dictionary files and shuts down the JWNL API. This 
method is not used in the program, since it would not 
make sense to uninstall the dictionary once it has been 
installed. It would only increase the total execution 
time. It has been implemented for good measure, 
should it be needed.  

Stemming[5] is the process of reducing an 
inflected or derived word to its base form. In other 
words all morphological deviations of a word are 
reduced to the same form, which makes comparison 
easier. The stemmed word is not necessarily returned 
to its morphological root, but a mutual stem. The 
morphological deviations of a word have different 
suffixes, but in essence describe the same. These 
different variants can therefore be merged into a 
distinct representative form. Thus a comparison of 
stemmed words turns up a higher relation for 
equivalent words. In addition storing becomes more 
effective. Words like observes, observed, observation, 
observationally should all be reduced to a mutual stem 
such as observe.  
There are a lot of proposed methods for finding stems. 
Some examples are; lookup tables, suffix-stripping, 
affix stemming and lemmatisation. Stemmers can both 
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be language dependant and independent. This is based 
on how the relevant stemmer is implemented. A lot of 
work has been put into the area of stemming; some of 
the more popular stemmers are Porter and Snowball.  
 
2. PROPOSED SYSTEM 

Reverse dictionaries approach can provide 
significantly higher quality. The proposed a set of 
methods for building and querying a reverse 
dictionary. Reverse dictionary system is based on the 
notion that a phrase that conceptually describes a word 
should resemble the word’s actual definition, if not 
matching the exact words, then at least conceptually 
similar. Consider, for example, the following concept 
phrase: “talks a lot, but without much substance.” 
Based on such a phrase, a reverse dictionary should 
return words such as “gabby,” “chatty,” and 
“garrulous.”  
Upon receipt of a user input phrase, we first find 
candidate words from a forward dictionary data 
source, where the definitions of these candidate words 
have some similarity to the user input. We then rank 
the candidate words in order of quality of match.  
The find candidate words phase consists of two key 
sub steps:  
1) Build the RMS. 
2) Query the RMS.  
 
2.1 Components: 
The first preprocessing step is to PoS tag the corpus. 
The PoS tagger relies on the text structure and 
morphological differences to determine the 
appropriate part-of-speech. For this reason, if it is 
required, PoS tagging is the first step to be carried out. 
After this, stopword removal is performed, followed 
by stemming. This order is chosen to reduce the 
amount of words to be stemmed. The stemmed words 
are then looked up in WordNet and their 
corresponding synonyms and hypernyms are added to 
the bag-of-words. Once the document vectors are 
completed in this way, the frequency of each word 
across the corpus can be counted and every word 
occurring less often than the pre specified threshold is 
pruned. 
Stemming, stopword removal and pruning all aim to 
improve clustering quality by removing noise, i.e. 
meaningless data. They all lead to a reduction in the 
number of dimensions in the term-space. Weighting is 
concerned with the estimation of the importance of 
individual terms. All of these have been used 
extensively and are considered the baseline for 
comparison in this work. However, the two techniques 
under investigation both add data to the 
representation. a PoS tagging adds syntactic 
information and WordNet is used to add synonyms 
and hypernyms.  
 
Building Reverse Mapping Sets. 

Given the large size of dictionaries, creating 
such mappings on the fly is infeasible. Thus, Procreate 

these Rs for every relevant term in the dictionary. This 
is a one time, offline event; once these mappings exist, 
we can use them for ongoing lookup. Thus, the cost of 
creating the corpus has no effect on runtime 
performance. For an input dictionary D, we create R 
mappings for all terms appearing in the sense phrases 
(definitions) in D.  
RMS Query 

This module responds to user input phrases. 
Upon receiving such an input phrase, we query the R 
indexes already present in the database to find 
candidate words whose definitions have any similarity 
to the input phrase. Upon receiving an input phrase U, 
we process U using a stepwise refinement approach. 
We start off by extracting the core terms from U, and 
searching for the candidate words (Ws) whose 
definitions contain these core terms exactly. (Note that 
we tune these terms slightly to increase the probability 
of generating Ws) If this first step does not generate a 
sufficient number of output Ws, defined by a tuneable 
input parameter α, which represents the minimum 
number of word phrases needed to halt processing and 
return output.  
Candidate word ranking  

In this module sorts a set of output Ws in 
order of decreasing similarity to U, based on the 
semantic similarity. To build such a ranking, we need 
to be able to assign a similarity measure for each (S,U) 
pair, where U is the user input phrase and S is a 
definition for some W in the candidate word set O. 
 
Forward mapping (standard dictionary): Intuitively, 
a forward mapping designates all the senses for a 
particular word phrase. This is expressed in terms of a 
forward map set (FMS). The FMS of a (word) phrase 
W, designated by F(W) is the set of (sense) phrases 
{S1, S2, . . . Sn } such that for each Sj Є F(Wi), (Wi à 
Sj) Є D. For example, suppose that the term “jovial” 
is associated with various meanings, including 
“showing high-spirited merriment” and “pertaining” 
to the god Jove, or Jupiter.” Here, F (jovial) would 
contain both of these phrases. 
Reverse mapping (reverse dictionary): Reverse 
mapping applies to terms and is expressed as a reverse 
map set (RMS). The RMS of t, denoted R(t), is a set 
of phrases { P1, P2, Pi,……, Pm}, such that "Pi  Î 
R(t), t Î F(Pi). Intuitively, the reverse map set of a 
term t consists of all the (word) phrases in whose 
definition t appears. 
 
Semantic Similarity  
This algorithm computes a similarity score between 
two strings, based on how related the contents of these 
are. All words are put into lists and compared to each 
other. The ordering of the words is therefore not 
important. Stop words are taken out of the similarity 
comparison and do not influence the final result. 
Furthermore, all the words which are not found in 
WordNet are likewise taken out of the equation. 
Words with a capitalized first letter are also taken out 
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if they can be used as a noun. This means that the set 
of words, which the comparison is being made on, is 
reduced. In some cases this may increase the similarity 
score. In others it may reduce the similarity score. The 
algorithm is dependent on a correct tagging of POS, 
since only the POS of a word is looked up and 
compared. With a POS tagging success rate of roughly 
ninety percent, tagging results are reliable. Since 
disambiguation is done by comparing fairly short 
descriptions of senses, the correct designation of the 
meaning of a word is not expected to be high. In most 
cases the most common meaning of the word will be 
given, which is tolerable, since it is most likely the 
meaning of the word. In situations where a match has 
been found, a more appealing meaning is given, 
suiting the interest of comparing words. The best 
matching’s from each set are grouped together and a 
similarity score is computed by these relations. This 
means that the text have to be fairly similar in length 
in order to get a correct similarity score. There can 
only be a certain amount of matching’s between two 
sets i.e. the number of elements in the smallest set. In 
reality the length of the texts is not important, but the 
number of words which are found in WordNet is.  
The Semantic Similarity [9] algorithm should produce 
higher similarity scores than those given by 
Levenshtein and Dice’s Coefficient. That is because, 
since this algorithm takes the relation between words 
into account. Words can have different forms, but still 
express the same thing, thus giving higher likelihood 
of striking a match. Exceptions are gibberish words, 
slang, names etc. i.e. words which cannot be found in 
a dictionary.  
 
2.2 Solution Architecture: 

We now describe our implementation 
architecture, with particular attention to design for 
scalability. The Reverse Dictionary Application 
(RDA) is a software module that takes a user phrase 
(U) as input, and returns a set of conceptually related 
words as output. 

 
Figure 2.2.1 Architecture of reverse dictionary. 

 
The user input phrase, split the word from the input 
phrase, perform the stemming. Predict every relevant 
term in the forward dictionary data source. In the 
generate query. input phrase, minimum and maximum 
output thresholds as input, then removal of level 1 stop 
words ( a, be, person, some, someone, too, very, who, 
the, in, of, and, to) and perform stemming, generate 

the query. Expand the query find each word’s 
Synonyms, Hyponyms and Hyponyms. The applying 
OR operation the in query. Execute the query find the 
set of candidate words. Finally sort the result based on 
the semantic similarity 
2.3 Experimental Environment: 

Our experimental environment consisted of two 
2.2 GHz dual-core CPU, 2 GB RAM servers running 
Windows XP pro and above. On one server, we 
installed our implementation our algorithms (written 
in Java). The other server housed is wordnet 
dictionary data. 

 
III. CONCLUSION 

We describe the many challenges inherent in 
building a reverse lexicon, and map drawback to the 
well-known abstract similarity problem. We tend to 
propose a collection of strategies for building and 
querying a reverse lexicon, and describe a collection 
of experiments that show the standard of our results, 
similarly because the runtime performance underneath 
load. Our experimental results show that our approach 
will give important enhancements in performance 
scale while not sacrificing answer quality. Our 
experiments scrutiny the standard of our approach to 
it of dictionary.com and OneLook.com reverse 
dictionaries show that the Wordster approach will give 
considerably higher quality over either of the opposite 
presently obtainable implementations. 
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