
Implementing a Higher Quality Input Phrase To Driven Reverse Dictionary

 Indian Journal of Research in Applied Sciences Engineering (IJRASE)
Vol.2.No.1 2014pp 52-56.

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

goniv Publications Page 52

IMPLEMENTING A HIGHER QUALITY INPUT PHRASE TO DRIVEN
REVERSE DICTIONARY

E.Kamalanathan1 and C.Sunitha Ram2

Department of Computer Science and Engineering,
SCSVMV University Enathur

kamalanathane@gmail.com1 csunitharam@kanchiuniv.ac.in2

ABSTRACT

Implementing a higher quality input phrase to driven reverse wordbook. In contrast to a conventional
forward wordbook, that map from word to their definitions, a reverse wordbook takes a user input phrase
describing the specified construct, and returns a group of candidate words that satisfy the input phrase. This work
has important application not just for the final public, notably those that work closely with words, however
conjointly within the general field of abstract search. The current a group of algorithms and therefore the results
of a group of experiments showing the retrieval accuracy and therefore the runtime latency performance is
implementation. The experimental results show that, approach will offer important enhancements in performance
scale while not sacrificing the standard of the result. Experiments scrutiny the standard of approach to it of
presently on the market reverse dictionaries show that the approach will offer considerably higher quality over
either of the opposite presently on the market implementations.

Keywords: Dictionaries, thesauruses, search process, web-based services.

1. INTRODUCTION

A Report work on creating a reverse
dictionary, As against a regular (forward) wordbook
that maps words to their definitions, a WD performs
the converse mapping, i.e., given a phrase describing
the required conception, it provides words whose
definitions match the entered definition phrase.
It’s relevant to language understanding. The approach
has a number of the characteristics expected from a
strong language understanding system. Firstly,
learning solely depends on unannoted text
information, which is abundant and contain the
individual bias of an observer. Secondly, the approach
is predicated on all-purpose resources (Brill’s PoS
Tagger, WordNet [7]), and also the performance is
studied below negative (hence additional realistic)
assumptions, e.g., that the tagger is trained on a
regular dataset with doubtless totally different
properties from the documents to be clustered.
Similarly, the approach studies the potential
advantages of victimization all potential senses (and
hypernyms) from WordNet, in an endeavor to defer
(or avoid altogether) the necessity for Word Sense
Disambiguation (WSD), and also the connected
pitfalls of a WSD tool which can be biased towards a
particular domain or language vogue

The user input is unlikely to precisely match
(indeed, would possibly disagree wide from) the
definition of a word within the forward lexicon. for
instance, a user could enter the phrase “to waste
resources on unimportant things” once searching for
an inspiration like “fritter,” whose definition may be
“spend frivolously and unwisely”— that is
conceptually similar, however doesn't contain any of
an equivalent words because the user input.

A implemented only the forward mechanism
to search for the Keyword in the dictionary. The
forward dictionary that maps words given by the user
to their definitions. The two most common methods to
achieve latent semantic indexing (LSI) and principal
component analysis (PCA), both analyze the
keywords of documents in a corpus to identify the
dominant concepts in the document. In most
implementations of CSP (concept similarity problem)
solutions, vectorization is done a priori, and at
runtime, only vector distances are computed.
Concepts are represented as vectors in a feature (or
keyword) space.

1.1 Background:
Natural Language Processing: Natural Language
Processing (NLP) [6] is a large field which
encompasses a lot of categories that are related to this

Implementing a Higher Quality Input Phrase To Driven Reverse Dictionary

goniv Publications Page 53

thesis. Specifically NLP is the process of
computationally extracting meaningful information of
natural languages. In other words: the ability for a
computer to interpret the expressive power of natural
language. Subcategories of NLP which are relevant
for this thesis are presented below.
WordNet: WordNet [7], [2] is a large lexical database
containing the words of the English language. It
resembles the traits of a thesaurus in that it structures
words that have similar meaning together. WordNet is
something more, since it also specifies different
connections for each of the senses of a given word.
These connections place words that are semantically
related close to one another in a network. WordNet
also displays some excellence of a dictionary, since it
describes the definition of words and their
corresponding part-of-speech.

Synonym relation is the main connection
between words, which means that words which are
conceptually equivalent, and thus interchangeable in
most contexts, are grouped together. These groupings
are called synsets and consist of a definition and
relations to other synsets. A word can be part of more
than one synset, since it can bear more than one
meaning. WordNet has a total of 117 000 synsets,
which are linked together. Not all synsets have a
distinct path to another synset. This is the case, since
the data structure in WordNet is split into four
different groups; nouns, verbs, adjectives and adverbs
(since they follow different rules of grammar). Thus it
is not feasible to compare words in different groups,
unless all groups are linked together with a common
entity. There are some exceptions which links synsets
cross part-of-speech in WordNet, but these are rare. It
is not always possible to find a relative between two
words within a group, since each group are made of
different base types. The relations that connect the
synsets within the different groups vary based on the
type of the synsets. The most used relation connecting
synsets is the hypernym/hyponym relation, which
specifies “IS-A” relations. The easiest way to capture
the nature of these relations is to think of them as
taxonomies. It then becomes evident that hyponym
relations are transitive i.e. all dogs are canines and all
golden retrievers are canines. In terms hypernyms are
more standard than their hyponyms, which are more
specific.

The coordinate term is easy to understand
from the above example, since both wolf and dog
shares the hypernym canine. The holonym/meronym
relation connecting noun synsets specifies the part-
whole relation. These relations are also called “HAS-
A” relations and inherits from their superordinate.
Properties are inherited downward and show that the
meronym is part of the holonym. The reverse is not
necessarily true i.e. a building is not part of a window.
The troponym relative is the manner in which
something is being done. These relate to one another

in the way they are performed i.e. to yell is to
communicate in some manner. Specificity is inherited
downward, thus the more general terms are super
ordinate. Entailment describes dependencies. By
doing something you must also be doing something
else i.e. by driving you must also be moving.
Adjectives are stored together in antonyms, i.e.
opposites. These are then linked to semantically alike
words. In some sense these semantically related words
are antonyms of their counterparts, which they are
stored together with. Most adverbs are easily derived
from adjectives. WordNet relates these adverbs to
adjectives.
WordNet Categories WordNet, the lexical database
developed by Miller et al., is used to include
background information on each word. Depending on
the research setup, words are replaced with their
synset IDs, which constitute their different possible
senses, and also different levels of hypernyms, more
general terms for the a word, are added.
Application Programming Interface

Several Application Programming Interfaces
(API) exists for WordNet. These allow easy access to
the platform and often additional functionality. As an
example of this the Java WordNet Library [8] (JWNL)
can be mentioned. This allows for access to the
WordNet Library files.

PoS Tagging PoS tags[8] are assigned to the corpus
using Brill’s PoS tagger. As PoS tagging require the
words to be in their original order this is done before
any other modifications on the corpora.

Part-of-speech (POS) tagging is the field
which is concerned with analysing a text and
assigning different grammatical roles to each entity.
These roles are based on the definition of the
particular word and the context in which it is written.
Words that are in close proximity of each other often
affect and assign meaning to each other. The POS
taggers job is to assign grammatical roles such as
nouns, verbs, adjectives, adverbs, etc. based upon
these relations. The tagging of POS is important in
information retrieval in general text processing. This
is the case since natural languages contain a lot of
ambiguity, which can make distinguishing
words/terms difficult. There are two main schools
when tagging POS. These are rule-based and
stochastic. Examples of the two are Brill’s tagger and
Stanford POS tagger, respectively. Rule-based taggers
work by applying the most used POS for a given word.
Predefined/lexical rules are then applied to the
structure for error analysis. Errors are corrected until
a satisfying threshold is reached. Stochastic taggers
use a trained corpus to determine the POS of a given
word. These trained corpuses contain pre-tagged text,
which define the correct POS of a given word in a
given context. The corpuses are vast enough to cover
a large area, which defines different uses of terms. The
stochastic tagger retrieves the context of the word in
question and relates it to the trained data. A correlation

Implementing a Higher Quality Input Phrase To Driven Reverse Dictionary

goniv Publications Page 54

is found by geometric analysis upon the use of the
word in the trained data. This means that the content
of the trained corpus very much influences the
outcome. Trained corpuses should thus be picked,
such that reflection of the field they are trying to tag is
maximal. Current taggers have a success rate above
the ninety-seven percent mark. This is to the extent
where even some linguists argue, which is the correct
result. It can thus be concluded that these taggers
exhibit near human results.
Stopword Removal Stopwords, i.e. words thought not
to convey any meaning, are removed from the text.
The approach taken in this work does not compile a
static list of stopwords, as usually done. Instead PoS
information is browbeaten and all tokens that are not
nouns, verbs or adjectives are removed.

Stop words are words which occur often in
text and speech. They do not tell much about the
content they are wrapped in, but helps humans
understand and interpret the residue of the content.
These terms are so generic that they do not mean
anything by themselves. In the context of text
processing they are basically just empty words, which
only takes up space, increases computational time and
affects the similarity measure in a way which is not
relevant. This can result in false positives.

Stop words is a broad term and there is no
precise requirement of which words are stop words.
To specify if a given word is a stop word, it has to be
put in context. In some situations a word might carry
relevance for the content and in others it may not. This
is defined by the area in which the content resides. A
stop word list should thus be chosen such that it
reflects the field which is being analysed. The words
in such a list should be filtered away from the content
in question.
This class includes only one method; which runs
through a list of words and removes all occurrences of
words specified in a file. A text file, which specifies
the stop words, is loaded into the program. This file is
called “stop-words.txt” and is located at the home
directory of the program. The text file can be edited
such that it only contains the desired stop words. A
representation of the stop words used in the text file
can be found in table - 1. After the list of stop words
has been loaded, it is compared to the words in the
given list. If a match is found the given word in the list
is removed. A list, exposed from stop words, is then
returned.

a
be
but
person
some
someone
too
very

who
the
in
of
and
to
that
for

with
this
from
whic
h
whe
n
what
than
into

these
where
those
how
during
much
upon
toward

among
although
whether
else
anyone
beside
whose
whom

onto
anybody
whenever
whereas

Table: 1 List of Stop words

Stemming Words with the same meaning appear in
various morphological forms. To capture their
similarity they are normalised into a common root-
form, the stem. The morphology function provided
with WordNet is used for stemming, because it only
yields stems that are contained in the WordNet
dictionary.
This class contains five methods; one for converting a
list of words into a string, two for stemming a list of
words and two for handling the access to WordNet
through the JWNL API[8]. The first method
listToString() takes an ArrayList of strings and
concatenate these into a string representation. The
second method stringStemmer() takes an ArrayList of
strings and iterates through each word, stemming
these by calling the private method wordStemmer().
This method checks if the JWNL API has been loaded
and starts stemming by looking up the lemma of a
word in WordNet. Before this is done, each word
starting with an uppercase letter is checked to see if it
can be used as a noun. If the word can be used as a
noun, it does not qualify for stemming and is returned
in its original form. The lemma lookup is done by
using a morphological processor, which is provided
by WordNet. This morphs the word into its lemma,
after which the word is checked for a match in the
database of WordNet. This is done by running through
all the specified POS databases defined in WordNet.
If a match is found, the lemma of the word is returned,
otherwise the original word is simply returned. Lastly,
the methods allowing access to WordNet initializes
the JWNL API and shuts it down, respectively. The
initializer() method gets an instance of the dictionary
files and loads the morphological processor. If this
method is not called, the program is not able to access
the WordNet files. The method close() closes the
dictionary files and shuts down the JWNL API. This
method is not used in the program, since it would not
make sense to uninstall the dictionary once it has been
installed. It would only increase the total execution
time. It has been implemented for good measure,
should it be needed.

Stemming[5] is the process of reducing an
inflected or derived word to its base form. In other
words all morphological deviations of a word are
reduced to the same form, which makes comparison
easier. The stemmed word is not necessarily returned
to its morphological root, but a mutual stem. The
morphological deviations of a word have different
suffixes, but in essence describe the same. These
different variants can therefore be merged into a
distinct representative form. Thus a comparison of
stemmed words turns up a higher relation for
equivalent words. In addition storing becomes more
effective. Words like observes, observed, observation,
observationally should all be reduced to a mutual stem
such as observe.
There are a lot of proposed methods for finding stems.
Some examples are; lookup tables, suffix-stripping,
affix stemming and lemmatisation. Stemmers can both

Implementing a Higher Quality Input Phrase To Driven Reverse Dictionary

goniv Publications Page 55

be language dependant and independent. This is based
on how the relevant stemmer is implemented. A lot of
work has been put into the area of stemming; some of
the more popular stemmers are Porter and Snowball.

2. PROPOSED SYSTEM

Reverse dictionaries approach can provide
significantly higher quality. The proposed a set of
methods for building and querying a reverse
dictionary. Reverse dictionary system is based on the
notion that a phrase that conceptually describes a word
should resemble the word’s actual definition, if not
matching the exact words, then at least conceptually
similar. Consider, for example, the following concept
phrase: “talks a lot, but without much substance.”
Based on such a phrase, a reverse dictionary should
return words such as “gabby,” “chatty,” and
“garrulous.”
Upon receipt of a user input phrase, we first find
candidate words from a forward dictionary data
source, where the definitions of these candidate words
have some similarity to the user input. We then rank
the candidate words in order of quality of match.
The find candidate words phase consists of two key
sub steps:
1) Build the RMS.
2) Query the RMS.

2.1 Components:
The first preprocessing step is to PoS tag the corpus.
The PoS tagger relies on the text structure and
morphological differences to determine the
appropriate part-of-speech. For this reason, if it is
required, PoS tagging is the first step to be carried out.
After this, stopword removal is performed, followed
by stemming. This order is chosen to reduce the
amount of words to be stemmed. The stemmed words
are then looked up in WordNet and their
corresponding synonyms and hypernyms are added to
the bag-of-words. Once the document vectors are
completed in this way, the frequency of each word
across the corpus can be counted and every word
occurring less often than the pre specified threshold is
pruned.
Stemming, stopword removal and pruning all aim to
improve clustering quality by removing noise, i.e.
meaningless data. They all lead to a reduction in the
number of dimensions in the term-space. Weighting is
concerned with the estimation of the importance of
individual terms. All of these have been used
extensively and are considered the baseline for
comparison in this work. However, the two techniques
under investigation both add data to the
representation. a PoS tagging adds syntactic
information and WordNet is used to add synonyms
and hypernyms.

Building Reverse Mapping Sets.

Given the large size of dictionaries, creating
such mappings on the fly is infeasible. Thus, Procreate

these Rs for every relevant term in the dictionary. This
is a one time, offline event; once these mappings exist,
we can use them for ongoing lookup. Thus, the cost of
creating the corpus has no effect on runtime
performance. For an input dictionary D, we create R
mappings for all terms appearing in the sense phrases
(definitions) in D.
RMS Query

This module responds to user input phrases.
Upon receiving such an input phrase, we query the R
indexes already present in the database to find
candidate words whose definitions have any similarity
to the input phrase. Upon receiving an input phrase U,
we process U using a stepwise refinement approach.
We start off by extracting the core terms from U, and
searching for the candidate words (Ws) whose
definitions contain these core terms exactly. (Note that
we tune these terms slightly to increase the probability
of generating Ws) If this first step does not generate a
sufficient number of output Ws, defined by a tuneable
input parameter α, which represents the minimum
number of word phrases needed to halt processing and
return output.
Candidate word ranking

In this module sorts a set of output Ws in
order of decreasing similarity to U, based on the
semantic similarity. To build such a ranking, we need
to be able to assign a similarity measure for each (S,U)
pair, where U is the user input phrase and S is a
definition for some W in the candidate word set O.

Forward mapping (standard dictionary): Intuitively,
a forward mapping designates all the senses for a
particular word phrase. This is expressed in terms of a
forward map set (FMS). The FMS of a (word) phrase
W, designated by F(W) is the set of (sense) phrases
{S1, S2, . . . Sn } such that for each Sj Є F(Wi), (Wi à
Sj) Є D. For example, suppose that the term “jovial”
is associated with various meanings, including
“showing high-spirited merriment” and “pertaining”
to the god Jove, or Jupiter.” Here, F (jovial) would
contain both of these phrases.
Reverse mapping (reverse dictionary): Reverse
mapping applies to terms and is expressed as a reverse
map set (RMS). The RMS of t, denoted R(t), is a set
of phrases { P1, P2, Pi,……, Pm}, such that "Pi Î
R(t), t Î F(Pi). Intuitively, the reverse map set of a
term t consists of all the (word) phrases in whose
definition t appears.

Semantic Similarity
This algorithm computes a similarity score between
two strings, based on how related the contents of these
are. All words are put into lists and compared to each
other. The ordering of the words is therefore not
important. Stop words are taken out of the similarity
comparison and do not influence the final result.
Furthermore, all the words which are not found in
WordNet are likewise taken out of the equation.
Words with a capitalized first letter are also taken out

Implementing a Higher Quality Input Phrase To Driven Reverse Dictionary

goniv Publications Page 56

if they can be used as a noun. This means that the set
of words, which the comparison is being made on, is
reduced. In some cases this may increase the similarity
score. In others it may reduce the similarity score. The
algorithm is dependent on a correct tagging of POS,
since only the POS of a word is looked up and
compared. With a POS tagging success rate of roughly
ninety percent, tagging results are reliable. Since
disambiguation is done by comparing fairly short
descriptions of senses, the correct designation of the
meaning of a word is not expected to be high. In most
cases the most common meaning of the word will be
given, which is tolerable, since it is most likely the
meaning of the word. In situations where a match has
been found, a more appealing meaning is given,
suiting the interest of comparing words. The best
matching’s from each set are grouped together and a
similarity score is computed by these relations. This
means that the text have to be fairly similar in length
in order to get a correct similarity score. There can
only be a certain amount of matching’s between two
sets i.e. the number of elements in the smallest set. In
reality the length of the texts is not important, but the
number of words which are found in WordNet is.
The Semantic Similarity [9] algorithm should produce
higher similarity scores than those given by
Levenshtein and Dice’s Coefficient. That is because,
since this algorithm takes the relation between words
into account. Words can have different forms, but still
express the same thing, thus giving higher likelihood
of striking a match. Exceptions are gibberish words,
slang, names etc. i.e. words which cannot be found in
a dictionary.

2.2 Solution Architecture:

We now describe our implementation
architecture, with particular attention to design for
scalability. The Reverse Dictionary Application
(RDA) is a software module that takes a user phrase
(U) as input, and returns a set of conceptually related
words as output.

Figure 2.2.1 Architecture of reverse dictionary.

The user input phrase, split the word from the input
phrase, perform the stemming. Predict every relevant
term in the forward dictionary data source. In the
generate query. input phrase, minimum and maximum
output thresholds as input, then removal of level 1 stop
words (a, be, person, some, someone, too, very, who,
the, in, of, and, to) and perform stemming, generate

the query. Expand the query find each word’s
Synonyms, Hyponyms and Hyponyms. The applying
OR operation the in query. Execute the query find the
set of candidate words. Finally sort the result based on
the semantic similarity
2.3 Experimental Environment:

Our experimental environment consisted of two
2.2 GHz dual-core CPU, 2 GB RAM servers running
Windows XP pro and above. On one server, we
installed our implementation our algorithms (written
in Java). The other server housed is wordnet
dictionary data.

III. CONCLUSION

We describe the many challenges inherent in
building a reverse lexicon, and map drawback to the
well-known abstract similarity problem. We tend to
propose a collection of strategies for building and
querying a reverse lexicon, and describe a collection
of experiments that show the standard of our results,
similarly because the runtime performance underneath
load. Our experimental results show that our approach
will give important enhancements in performance
scale while not sacrificing answer quality. Our
experiments scrutiny the standard of our approach to
it of dictionary.com and OneLook.com reverse
dictionaries show that the Wordster approach will give
considerably higher quality over either of the opposite
presently obtainable implementations.

REFERENCES
[1]. D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent

Dirichlet Allocation,” J. Machine Learning
Research, vol. 3, pp. 993-1022, Mar. 2003.

[2]. T. Dao and T. Simpson, “Measuring Similarity
between Sentences,” 2009.
http://opensvn.csie.org/WordNetDotNet/trunk/
Projects/

[3]. T. Hofmann, “Probabilistic Latent Semantic
Indexing,” SIGIR ’99: Proc. 22nd Ann. Int’l
ACM SIGIR Conf. Research and Development in
Information Retrieval, pp. 50-57, 1999.

[4]. D. Lin, “An Information-Theoretic Definition of
Similarity,” Proc .Int’l Conf. Machine Learning,
1998.

[5]. M. Porter, “The Porter Stemming
Algorithm,”http://tartarus.org/martin/PorterStem
mer/ , 2009.

[6]. O.S. Project “Opennlp,”
http://opennlp.sourceforge.net/, 2009.

[7]. G. Miller, C. Fellbaum, R. Tengi, P. Wakefield,
and H. Langone, “Wordnet Lexical Database,”
http://wordnet.princeton.edu/wordnet/download/
, 2009.

[8]. http://extjwnl.sourceforge.net/
[9]. P. Resnik, “Semantic Similarity in a Taxonomy:

An Information-Based Measure and Its
Application to Problems of Ambiguity in Natural
Language,” J. Artificial Intelligence Research,
vol. 11, pp. 95- 130, 1999.

